首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   240575篇
  免费   16239篇
  国内免费   8225篇
电工技术   11704篇
技术理论   14篇
综合类   11190篇
化学工业   39974篇
金属工艺   13291篇
机械仪表   13208篇
建筑科学   17018篇
矿业工程   4987篇
能源动力   7129篇
轻工业   14650篇
水利工程   3514篇
石油天然气   12234篇
武器工业   1345篇
无线电   28847篇
一般工业技术   35938篇
冶金工业   17554篇
原子能技术   2867篇
自动化技术   29575篇
  2023年   3095篇
  2022年   4763篇
  2021年   7710篇
  2020年   5886篇
  2019年   5221篇
  2018年   5943篇
  2017年   6672篇
  2016年   6277篇
  2015年   7726篇
  2014年   10191篇
  2013年   14448篇
  2012年   13522篇
  2011年   15581篇
  2010年   12983篇
  2009年   13093篇
  2008年   12363篇
  2007年   12075篇
  2006年   12148篇
  2005年   10744篇
  2004年   7649篇
  2003年   6743篇
  2002年   6161篇
  2001年   5652篇
  2000年   5588篇
  1999年   6384篇
  1998年   7110篇
  1997年   5813篇
  1996年   5166篇
  1995年   4209篇
  1994年   3453篇
  1993年   2895篇
  1992年   2229篇
  1991年   1797篇
  1990年   1500篇
  1989年   1328篇
  1988年   1020篇
  1987年   871篇
  1986年   725篇
  1985年   683篇
  1984年   490篇
  1983年   473篇
  1982年   452篇
  1981年   430篇
  1980年   473篇
  1979年   433篇
  1978年   354篇
  1977年   478篇
  1976年   705篇
  1975年   346篇
  1973年   348篇
排序方式: 共有10000条查询结果,搜索用时 140 毫秒
991.
Aerosol deposition with gas phase-synthesized chain-like nanoaggregates can yield dense coatings from the impaction of particles on a substrate; however, dense coating formation is not well understood. Here, we study coating consolidation at the single nanoaggregate level. Flame spray pyrolysis-made tin oxide nanoaggregates are mobility (size) filtered, accelerated through a de Laval nozzle, and impacted on alumina substrates. TEM images obtained from low velocity collection and supersonic deposition are compared via quantitative image analysis, which reveals that upon supersonic impact nanoaggregates fragment into smaller aggregates. This suggests that fragmentation is a key step in producing coatings denser than the depositing nanoaggregates themselves. We supplement experiments with detailed particle trajectory calculations, which show that the impact energies per atom during nanoaggregate deposition are below 0.2 eV/molecule. These results suggest that fragmentation can only occur at locations where nanoaggregates bonded by van der Waals and capillary interactions.  相似文献   
992.
In this study, different molar ratios of Nd:Ce were directly mixed with prepared pure Gd2Zr2O7 powders without space occupancy design. Samples were obtained by performing sparking plasma sintering (SPS) at 1750°C for 5 minutes. X-ray diffraction (XRD) results show that maximum solid solubility of simulated radionuclides can reach 50 mol%. In addition, all samples with the maximum solid solubility have high compactness, and all elements are evenly distributed on the surface of the samples. The samples show a better crystallization effect as the molar ratio of Nd:Ce increases. The maximum solid solubility increases from 42 mol% to 50 mol% when the amount of Nd2O3 reaches 66 mol%.  相似文献   
993.
Early transition metal carbides are considered to be superior candidate materials for oxidizing environments at temperatures exceeding 2000°C. Generally, the remarkable oxidation resistance is largely attributed to a carbonaceous oxide interlayer (eg, Hf–O–C, Zr–O–C, and Ta–O–C), located at the interface between the external oxide layer and internal carbide (eg, HfC, ZrC, and TaC), acting as the primary oxygen barrier. However, the oxygen barrier mechanism of the carbonaceous oxide interlayer remains unclear. Herein, through studying the oxidation behavior of a novel multicomponent carbide Hf0.5Zr0.3Ti0.2C in oxidizing environments up to 2500°C, the oxygen barrier mechanism of the carbonaceous oxide was recently revealed. We found that the oxygen barrier resulted from the slow oxygen diffusion through the inner grains of Hf-Zr–Ti–O due to the presence of carbon formed at the grain boundaries because of the existence of compact external oxide layer, beneath which the Hf–Zr–Ti–O–C interlayer possesses much lower oxygen activity and temperature that allow carbon to exist stably. This as-formed carbon strongly retarded the fast diffusion of oxygen along the grain boundaries of oxides. Additionally, desirable synergisms of the designed multicomponent system, particularly, the outward short-circuit diffusion of Ti, lead to the self-healing of the external oxide layer, evidently enhancing integral protection performance against oxidizing environments.  相似文献   
994.
Photostriction of lanthanum-modified lead zirconate titanate (PLZT) was commonly attributed to the combination of anomalous photovoltaic effect and inverse piezoelectric response. Herein, distinct photostrictions are detected in both poled and unpoled PLZT ceramics under 405 and 520 nm laser illuminations. The maximum photostriction around 0.09% is obtained in unpoled PLZT under 405 nm illumination, which is nine times of previously reported value that deduced from poled PLZT. The photoelectric and photovoltaic characterizations of poled/unpoled PLZT further evidence that the detected photostriction shows no direct association with the photovoltage-induced inverse piezoresponse. The light-induced microstructure changes observed by in situ piezoelectric force microscopy are revealed by domain evolutions along the boundaries. The possible photostriction mechanism of PLZT is attributed to the strong photo-induced electron-lattice coupling, which is suggested by the light-induced changes of the Zr/Ti-O-Zr/Ti bonds reflected by the power-dependent Raman spectra. This study extends the photostriction of PLZT to visible light range and will also stimulate reappraisal of the underlying mechanism of photostrictive effect involving ferroelectrics.  相似文献   
995.
996.
During high temperature service, a series of microstructure and phase evolutions occur in thermal barrier coatings (TBCs), which result in degradation of thermal insulation and durability. In this study, the sintering behavior of an air plasma sprayed 8 wt% YSZ coating deposited using electro-sprayed nanostructured particles (ESP) as feedstock powder was investigated and compared with conventional YSZ coating deposited using hollow spherical powders (HOSP). Due to the distinct asymmetric porous structure formed by nanosized YSZ particles, the ESP powder was partially melted in the plasma jet during the deposition, which resulted in the formation of a nanostructured coating that consisted of porous nanozones and dense zones. The ESP coating not only shows a significantly lower initial thermal conductivity of 0.70 W/mK, but also exhibits a stronger sintering resistance in terms of phase stability and thermal insulation compared to the conventional coating. When subjected to prolonged sintering at 1400°C for 128 hours, the thermal conductivity of the ESP coating would gradually increase to about half that of the HOSP coating at 1.29 W/mK. These differences are ascribed to the interaction among different sintering behavior between nanozones and dense zones.  相似文献   
997.
In this work, ferroelastic domain switching and R-curve behavior in lead zirconate titanate (Nb/Ce co-doped Pb(Zr0.52Ti0.48)O3, ab. PZT-NC)-based ferroelectric ceramics were investigated, using the indentation-strength-in-bending (ISB) method. Firstly, Vickers indentation test examined the notable fracture anisotropy of PZT-NC ceramics between the poling direction and its perpendicular direction, and the crack open displacement (COD) profiles in the two directions were also theoretically calculated from the indentation fracture mechanics. And then two kinds of ferroelastic domain switching modes (in-plane and out-of-plane) were used for explaining such anisotropic propagation behavior of indentation cracks. The subsequent three-point bending test illustrated the dependence of fracture strength on indentation load and the rising crack growth resistance curves (R-curves) in two directions. The resulted R-curves were fitted by the Hill's type Growth Function successfully, giving the reasonable values of crack extension exponential (n), plateau fracture toughness (Kmax), and initial fracture toughness (Kini). The in-plane ferroelastic domain switching was identified as a more significant toughening mechanism for PZT-NC ceramics than the out-of-plane switching due to more switchable domains.  相似文献   
998.
Low-temperature methanation of CO in the continuous stirred tank reactor (CSTR) over Zr doped Ni/Al2O3 catalyst calcined at different temperatures (673, 723, and 823 K) was investigated. XRD, TPR, XPS, ICP, SEM, and S-TPR techniques were employed to characterize the fresh and spent catalysts. Based on the characterization results, it was found that low-temperature (673 K) calcination could effectively prohibit the formation of NiAl2O4 spinel, thereby resulting in more reducible NiO particles, which were the essential precursor of methanation active sites over the catalyst surface. Thus, the highest CO conversion of 93.6% was achieved over the 25N3ZA-673 catalyst. In addition, the deactivation rate of 25N3ZA-673 was relatively slow in comparison to 25N3ZA-823 due to the presence of more reducible NiO. The formed nickel carbonyl species (Ni[CO]x), which quickly decomposed at a higher reaction temperature, was closely related to the catalyst deactivation. Therefore, 25N3ZA-673 possessed much better stability at 593 K than that at 553 K.  相似文献   
999.
Fused deposition modeling (FDM) produces parts through layer by layer on the top of each other, making it almost impossible to obtain smooth printed parts. Hence, there is a huge demand for the postprocessing of the FDM-printed parts. Laser polishing is a novel technique that can be used to polish products to obtain a smoother surface. The aim of this work was to explore the feasibility of surface-finishing FDM-printed polylactic acid (PLA) parts by laser polishing. The surface roughness, surface morphology, dynamic mechanical analysis (DMA), and tensile properties were investigated. The results indicated that the lower laser power and the bigger laser beam diameter within a certain range could facilitate the formation of smoother surface. With optimized parameters, the surface roughness was reduced by 90.4%. DMA showed that the storage modulus (E’) and glass transition temperature of PLA specimens were significantly improved due to the decrease of molecular mobility of denser structures. Moreover, the tensile strength and Young's modulus of the PLA specimen were also significantly increased after laser polishing. The fracture morphologies were observed, and the possible strengthening mechanism was also discussed. These results indicated that laser polishing could be an efficient method for surface polishing of FDM parts. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48288.  相似文献   
1000.
Rubber blends are widely used for combining the advantages of each rubber component. However, to date, how to determine and distinguish the vulcanization kinetics for each single rubber phase in rubber blends during the co-vulcanization process is still a challenge. Herein, high-resolution pyrolysis gas chromatography–mass spectrometry (HR PyGC-MS) was employed for the first time to investigate the vulcanization kinetics of natural rubber (NR) and styrene–butadiene rubber (SBR) in NR/SBR blends filled with modified silica (SiO2). The reaction rates of crosslinking of each rubber phase in NR/SBR were calculated, which showed that the crosslinking rates of NR were much lower than those of SBR phase in the unfilled blends and blends filled with unmodified and silane modified silica. Interestingly, the vulcanization rates of NR and SBR phase were approximately same in the vulcanization accelerator modified silica filled blends, showing better co-vulcanization. In addition, the vulcanization accelerator modified silica was uniformly dispersed and endowed rubber blends with higher mechanical strength compared to the untreated silica. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48838.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号